Hi all,
On behalf of the SciPy development team, I’m pleased to
announce the pre-release SciPy 1.15.0rc2
–please
help us test this version.
Sources and binary wheels can be found at:
https://github.com/scipy/scipy/releases/tag/v1.15.0rc2
and at:
https://pypi.org/project/scipy/1.15.0rc2/
One of a few ways to install this release with pip
:
pip install scipy==1.15.0rc2
SciPy 1.15.0 Release Notes
Note: SciPy 1.15.0
is not released yet!
SciPy 1.15.0
is the culmination of 6 months of hard work. It contains
many new features, numerous bug-fixes, improved test coverage and better
documentation. There have been a number of deprecations and API changes
in this release, which are documented below. All users are encouraged to
upgrade to this release, as there are a large number of bug-fixes and
optimizations. Before upgrading, we recommend that users check that
their own code does not use deprecated SciPy functionality (to do so,
run your code with python -Wd
and check for DeprecationWarning
s).
Our development attention will now shift to bug-fix releases on the
1.15.x branch, and on adding new features on the main branch.
This release requires Python 3.10-3.13
and NumPy 1.23.5
or greater.
Highlights of this release
-
Sparse arrays are now fully functional for 1-D and 2-D arrays. We recommend
that all new code use sparse arrays instead of sparse matrices and that
developers start to migrate their existing code from sparse matrix to sparse
array:migration_to_sparray
. Bothsparse.linalg
andsparse.csgraph
work with either sparse matrix or sparse array and work internally with
sparse array. -
Sparse arrays now provide basic support for n-D arrays in the COO format
includingadd
,subtract
,reshape
,transpose
,matmul
,
dot
,tensordot
and others. More functionality is coming in future
releases. -
Preliminary support for free-threaded Python 3.13.
-
New probability distribution features in
scipy.stats
can be used to improve
the speed and accuracy of existing continuous distributions and perform new
probability calculations. -
Several new features support vectorized calculations with Python Array API
Standard compatible input (see “Array API Standard Support” below):scipy.differentiate
is a new top-level submodule for accurate
estimation of derivatives of black box functions.scipy.optimize.elementwise
contains new functions for root-finding and
minimization of univariate functions.scipy.integrate
offers new functionscubature
,tanhsinh
, and
nsum
for multivariate integration, univariate integration, and
univariate series summation, respectively.
-
scipy.interpolate.AAA
adds the AAA algorithm for barycentric rational
approximation of real or complex functions. -
scipy.special
adds new functions offering improved Legendre function
implementations with a more consistent interface.
New features
scipy.differentiate
introduction
The new scipy.differentiate
sub-package contains functions for accurate
estimation of derivatives of black box functions.
- Use
scipy.differentiate.derivative
for first-order derivatives of
scalar-in, scalar-out functions. - Use
scipy.differentiate.jacobian
for first-order partial derivatives of
vector-in, vector-out functions. - Use
scipy.differentiate.hessian
for second-order partial derivatives of
vector-in, scalar-out functions.
All functions use high-order finite difference rules with adaptive (real)
step size. To facilitate batch computation, these functions are vectorized
and support several Array API compatible array libraries in addition to NumPy
(see “Array API Standard Support” below).
scipy.integrate
improvements
- The new
scipy.integrate.cubature
function supports multidimensional
integration, and has support for approximating integrals with
one or more sets of infinite limits. scipy.integrate.tanhsinh
is now exposed for public use, allowing
evaluation of a convergent integral using tanh-sinh quadrature.scipy.integrate.nsum
evaluates finite and infinite series and their
logarithms.scipy.integrate.lebedev_rule
computes abscissae and weights for
integration over the surface of a sphere.- The
QUADPACK
Fortran77 package has been ported to C.
scipy.interpolate
improvements
scipy.interpolate.AAA
adds the AAA algorithm for barycentric rational
approximation of real or complex functions.scipy.interpolate.FloaterHormannInterpolator
adds barycentric rational
interpolation.- New functions
scipy.interpolate.make_splrep
and
scipy.interpolate.make_splprep
implement construction of smoothing splines.
The algorithmic content is equivalent to FITPACK (splrep
andsplprep
functions, and*UnivariateSpline
classes) and the user API is consistent
withmake_interp_spline
: these functions receive data arrays and return
ascipy.interpolate.BSpline
instance. - New generator function
scipy.interpolate.generate_knots
implements the
FITPACK strategy for selecting knots of a smoothing spline given the
smoothness parameter,s
. The function exposes the internal logic of knot
selection thatsplrep
and*UnivariateSpline
was using.
scipy.linalg
improvements
scipy.linalg.interpolative
Fortran77 code has been ported to Cython.scipy.linalg.solve
supports several new values for theassume_a
argument, enabling faster computation for diagonal, tri-diagonal, banded, and
triangular matrices. Also, whenassume_a
is left unspecified, the
function now automatically detects and exploits diagonal, tri-diagonal,
and triangular structures.scipy.linalg
matrix creation functions (scipy.linalg.circulant
,
scipy.linalg.companion
,scipy.linalg.convolution_matrix
,
scipy.linalg.fiedler
,scipy.linalg.fiedler_companion
, and
scipy.linalg.leslie
) now support batch
matrix creation.scipy.linalg.funm
is faster.scipy.linalg.orthogonal_procrustes
now supports complex input.- Wrappers for the following LAPACK routines have been added in
scipy.linalg.lapack
:?lantr
,?sytrs
,?hetrs
,?trcon
,
and?gtcon
. scipy.linalg.expm
was rewritten in C.scipy.linalg.null_space
now accepts the new argumentsoverwrite_a
,
check_finite
, andlapack_driver
.id_dist
Fortran code was rewritten in Cython.
scipy.ndimage
improvements
- Several additional filtering functions now support an
axes
argument
that specifies which axes of the input filtering is to be performed on.
These includecorrelate
,convolve
,generic_laplace
,laplace
,
gaussian_laplace
,derivative2
,generic_gradient_magnitude
,
gaussian_gradient_magnitude
andgeneric_filter
. - The binary and grayscale morphology functions now support an
axes
argument that specifies which axes of the input filtering is to be performed
on. scipy.ndimage.rank_filter
time complexity has improved fromn
to
log(n)
.
scipy.optimize
improvements
- The vendored HiGHS library has been upgraded from
1.4.0
to1.8.0
,
bringing accuracy and performance improvements to solvers. - The
MINPACK
Fortran77 package has been ported to C. - The
L-BFGS-B
Fortran77 package has been ported to C. - The new
scipy.optimize.elementwise
namespace includes functions
bracket_root
,find_root
,bracket_minimum
, andfind_minimum
for root-finding and minimization of univariate functions. To facilitate
batch computation, these functions are vectorized and support several
Array API compatible array libraries in addition to NumPy (see
“Array API Standard Support” below). Compared to existing functions (e.g.
scipy.optimize.root_scalar
andscipy.optimize.minimize_scalar
),
these functions can offer speedups of over 100x when used with NumPy arrays,
and even greater gains are possible with other Array API Standard compatible
array libraries (e.g. CuPy). scipy.optimize.differential_evolution
now supports more general use of
workers
, such as passing a map-like callable.scipy.optimize.nnls
was rewritten in Cython.HessianUpdateStrategy
now supports__matmul__
.
scipy.signal
improvements
- Add functionality of complex-valued waveforms to
signal.chirp()
. scipy.signal.lombscargle
has two new arguments,weights
and
floating_mean
, enabling sample weighting and removal of an unknown
y-offset independently for each frequency. Additionally, thenormalize
argument includes a new option to return the complex representation of the
amplitude and phase.- New function
scipy.signal.envelope
for computation of the envelope of a
real or complex valued signal.
scipy.sparse
improvements
- A migration guide is now available for
moving from sparse.matrix to sparse.array in your code/library. - Sparse arrays now support indexing for 1-D and 2-D arrays. So, sparse
arrays are now fully functional for 1-D and 2D. - n-D sparse arrays in COO format can now be constructed, reshaped and used
for basic arithmetic. - New functions
sparse.linalg.is_sptriangular
and
sparse.linalg.spbandwidth
mimic the existing dense tools
linalg.is_triangular
andlinalg.bandwidth
. sparse.linalg
andsparse.csgraph
now work with sparse arrays. Be
careful that your index arrays are 32-bit. We are working on 64bit support.- The vendored
ARPACK
library has been upgraded to version3.9.1
. - COO, CSR, CSC and LIL formats now support the
axis
argument for
count_nonzero
. - Sparse arrays and matrices may now raise errors when initialized with
incompatible data types, such asfloat16
. min
,max
,argmin
, andargmax
now support computation
over nonzero elements only via the newexplicit
argument.- New functions
get_index_dtype
andsafely_cast_index_arrays
are
available to facilitate index array casting insparse
.
scipy.spatial
improvements
Rotation.concatenate
now accepts a bareRotation
object, and will
return a copy of it.
scipy.special
improvements
-
New functions offering improved Legendre function implementations with a
more consistent interface. See respective docstrings for more information.scipy.special.legendre_p
,scipy.special.legendre_p_all
scipy.special.assoc_legendre_p
,scipy.special.assoc_legendre_p_all
scipy.special.sph_harm_y
,scipy.special.sph_harm_y_all
scipy.special.sph_legendre_p
,scipy.special.sph_legendre_p_all
,
-
The factorial functions
special.{factorial,factorial2,factorialk}
now
offer an extension to the complex domain by passing the kwarg
extend='complex'
. This is opt-in because it changes the values for
negative inputs (which by default return 0), as well as for some integers
(in the case offactorial2
andfactorialk
; for more details,
check the respective docstrings). -
scipy.special.zeta
now defines the Riemann zeta function on the complex
plane. -
scipy.special.softplus
computes the softplus function -
The spherical Bessel functions (
scipy.special.spherical_jn
,
scipy.special.spherical_yn
,scipy.special.spherical_in
, and
scipy.special.spherical_kn
) now support negative arguments with real dtype. -
scipy.special.logsumexp
now preserves precision when one element of the
sum has magnitude much bigger than the rest. -
The accuracy of several functions has been improved:
scipy.special.ncfdtr
,scipy.special.nctdtr
, and
scipy.special.gdtrib
have been improved throughout the domain.scipy.special.hyperu
is improved for the case ofb=1
, smallx
,
and smalla
.scipy.special.logit
is improved near the argumentp=0.5
.scipy.special.rel_entr
is improved whenx/y
overflows, underflows,
or is close to1
.
-
scipy.special.ndtr
is now more efficient forsqrt(2)/2 < |x| < 1
.
scipy.stats
improvements
-
A new probability distribution infrastructure has been added for the
implementation of univariate, continuous distributions. It has several
speed, accuracy, memory, and interface advantages compared to the
previous infrastructure. Seerv_infrastructure
for a tutorial.- Use
scipy.stats.make_distribution
to treat an existing continuous
distribution (e.g.scipy.stats.norm
) with the new infrastructure.
This can improve the speed and accuracy of existing distributions,
especially those with methods not overridden with distribution-specific
formulas. scipy.stats.Normal
andscipy.stats.Uniform
are pre-defined classes
to represent the normal and uniform distributions, respectively.
Their interfaces may be faster and more convenient than those produced by
make_distribution
.scipy.stats.Mixture
can be used to represent mixture distributions.
- Use
-
Instances of
scipy.stats.Normal
,scipy.stats.Uniform
, and the classes
returned byscipy.stats.make_distribution
are supported by several new
mathematical transformations.scipy.stats.truncate
for truncation of the support.scipy.stats.order_statistic
for the order statistics of a given number
of IID random variables.scipy.stats.abs
,scipy.stats.exp
, andscipy.stats.log
. For example,
scipy.stats.abs(Normal())
is distributed according to the folded normal
andscipy.stats.exp(Normal())
is lognormally distributed.
-
The new
scipy.stats.lmoment
calculates sample l-moments and l-moment
ratios. Notably, these sample estimators are unbiased. -
scipy.stats.chatterjeexi
computes the Xi correlation coefficient, which
can detect nonlinear dependence. The function also performs a hypothesis
test of independence between samples. -
scipy.stats.wilcoxon
has improved method resolution logic for the default
method='auto'
. Other values ofmethod
provided by the user are now
respected in all cases, and the method argumentapprox
has been
renamed toasymptotic
for consistency with similar functions. (Use of
approx
is still allowed for backward compatibility.) -
There are several new probability distributions:
scipy.stats.dpareto_lognorm
represents the double Pareto lognormal
distribution.scipy.stats.landau
represents the Landau distribution.scipy.stats.normal_inverse_gamma
represents the normal-inverse-gamma
distribution.scipy.stats.poisson_binom
represents the Poisson binomial distribution.
-
Batch calculation with
scipy.stats.alexandergovern
and
scipy.stats.combine_pvalues
is faster. -
scipy.stats.chisquare
added an argumentsum_check
. By default, the
function raises an error when the sum of expected and obseved frequencies
are not equal; settingsum_check=False
disables this check to
facilitate hypothesis tests other than Pearson’s chi-squared test. -
The accuracy of several distribution methods has been improved, including:
scipy.stats.nct
methodpdf
scipy.stats.crystalball
methodsf
scipy.stats.geom
methodrvs
scipy.stats.cauchy
methodslogpdf
,pdf
,ppf
andisf
- The
logcdf
and/orlogsf
methods of distributions that do not
override the generic implementation of these methods, including
scipy.stats.beta
,scipy.stats.betaprime
,scipy.stats.cauchy
,
scipy.stats.chi
,scipy.stats.chi2
,scipy.stats.exponweib
,
scipy.stats.gamma
,scipy.stats.gompertz
,scipy.stats.halflogistic
,
scipy.stats.hypsecant
,scipy.stats.invgamma
,scipy.stats.laplace
,
scipy.stats.levy
,scipy.stats.loggamma
,scipy.stats.maxwell
,
scipy.stats.nakagami
, andscipy.stats.t
.
-
scipy.stats.qmc.PoissonDisk
now accepts lower and upper bounds
parametersl_bounds
andu_bounds
. -
scipy.stats.fisher_exact
now supports two-dimensional tables with shapes
other than(2, 2)
.
Preliminary Support for Free-Threaded CPython 3.13
SciPy 1.15
has preliminary support for the free-threaded build of CPython
3.13.
This allows SciPy functionality to execute in parallel with Python
threads
(see the threading
stdlib module). This support was enabled by fixing a
significant number of thread-safety issues in both pure Python and
C/C++/Cython/Fortran extension modules. Wheels are provided on PyPI for this
release; NumPy >=2.1.3
is required at runtime. Note that building for a
free-threaded interpreter requires a recent pre-release or nightly for Cython
3.1.0
.
Support for free-threaded Python does not mean that SciPy is fully thread-safe.
Please see scipy_thread_safety
for more details.
If you are interested in free-threaded Python, for example because you have a
multiprocessing-based workflow that you are interested in running with Python
threads, we encourage testing and experimentation. If you run into problems
that you suspect are because of SciPy, please open an issue, checking first if
the bug also occurs in the “regular” non-free-threaded CPython 3.13
build.
Many threading bugs can also occur in code that releases the GIL; disabling
the GIL only makes it easier to hit threading bugs.
Array API Standard Support
Experimental support for array libraries other than NumPy has been added to
existing sub-packages in recent versions of SciPy. Please consider testing
these features by setting an environment variable SCIPY_ARRAY_API=1
and
providing PyTorch, JAX, ndonnx, or CuPy arrays as array arguments. Features
with support added for SciPy 1.15.0
include:
- All functions in
scipy.differentiate
(new sub-package) - All functions in
scipy.optimize.elementwise
(new namespace) scipy.optimize.rosen
,scipy.optimize.rosen_der
, and
scipy.optimize.rosen_hess
scipy.special.logsumexp
scipy.integrate.trapezoid
scipy.integrate.tanhsinh
(newly public function)scipy.integrate.cubature
(new function)scipy.integrate.nsum
(new function)scipy.special.chdtr
,scipy.special.betainc
, andscipy.special.betaincc
scipy.stats.boxcox_llf
scipy.stats.differential_entropy
scipy.stats.zmap
,scipy.stats.zscore
, andscipy.stats.gzscore
scipy.stats.tmean
,scipy.stats.tvar
,scipy.stats.tstd
,
scipy.stats.tsem
,scipy.stats.tmin
, andscipy.stats.tmax
scipy.stats.gmean
,scipy.stats.hmean
andscipy.stats.pmean
scipy.stats.combine_pvalues
scipy.stats.ttest_ind
,scipy.stats.ttest_rel
scipy.stats.directional_stats
scipy.ndimage
functions will now delegate tocupyx.scipy.ndimage
,
and for other backends will transit via NumPy arrays on the host.
Deprecated features
- Functions
scipy.linalg.interpolative.rand
and
scipy.linalg.interpolative.seed
have been deprecated and will be removed
in SciPy1.17.0
. - Complex inputs to
scipy.spatial.distance.cosine
and
scipy.spatial.distance.correlation
have been deprecated and will raise
an error in SciPy1.17.0
. scipy.spatial.distance.kulczynski1
and
scipy.spatial.distance.sokalmichener
were deprecated and will be removed
in SciPy1.17.0
.scipy.stats.find_repeats
is deprecated as of SciPy1.15.0
and will be
removed in SciPy1.17.0
. Please use
numpy.unique
/numpy.unique_counts
instead.scipy.linalg.kron
is deprecated in favour ofnumpy.kron
.- Using object arrays and longdouble arrays in
scipy.signal
convolution/correlation functions (scipy.signal.correlate
,
scipy.signal.convolve
andscipy.signal.choose_conv_method
) and
filtering functions (scipy.signal.lfilter
,scipy.signal.sosfilt
) has
been deprecated as of SciPy1.15.0
and will be removed in SciPy
1.17.0
. scipy.stats.linregress
has deprecated one-argument use; the two
variables must be specified as separate arguments.scipy.stats.trapz
is deprecated in favor ofscipy.stats.trapezoid
.scipy.special.lpn
is deprecated in favor ofscipy.special.legendre_p_all
.scipy.special.lpmn
andscipy.special.clpmn
are deprecated in favor of
scipy.special.assoc_legendre_p_all
.scipy.special.sph_harm
has been deprecated in favor of
scipy.special.sph_harm_y
.- The raveling of multi-dimensional input by
scipy.linalg.toeplitz
has
been deprecated. It will support batching in SciPy1.17.0
. - The
random_state
andpermutations
arguments of
scipy.stats.ttest_ind
are deprecated. Usemethod
to perform a
permutation test, instead.
Expired Deprecations
- The wavelet functions in
scipy.signal
have been removed. This includes
daub
,qmf
,cascade
,morlet
,morlet2
,ricker
,
andcwt
. Users should usepywavelets
instead. scipy.signal.cmplx_sort
has been removed.scipy.integrate.quadrature
andscipy.integrate.romberg
have been
removed in favour ofscipy.integrate.quad
.scipy.stats.rvs_ratio_uniforms
has been removed in favor of
scipy.stats.sampling.RatioUniforms
.scipy.special.factorial
now raises an error for non-integer scalars when
exact=True
.scipy.integrate.cumulative_trapezoid
now raises an error for values of
initial
other than0
andNone
.- Complex dtypes now raise an error in
scipy.interpolate.Akima1DInterpolator
andscipy.interpolate.PchipInterpolator
special.btdtr
andspecial.btdtri
have been removed.- The default of the
exact=
kwarg inspecial.factorialk
has changed
fromTrue
toFalse
. - All functions in the
scipy.misc
submodule have been removed.
Backwards incompatible changes
interpolate.BSpline.integrate
output is now always a numpy array.
Previously, for 1D splines the output was a python float or a 0D array
depending on the value of theextrapolate
argument.scipy.stats.wilcoxon
now respects themethod
argument provided by the
user. Previously, even ifmethod='exact'
was specified, the function
would resort tomethod='approx'
in some cases.scipy.integrate.AccuracyWarning
has been removed as the functions the
warning was emitted from (scipy.integrate.quadrature
and
scipy.integrate.romberg
) have been removed.
Other changes
-
A separate accompanying type stubs package,
scipy-stubs
, will be made
available with the1.15.0
release. `Installation instructions are
available: GitHub - jorenham/scipy-stubs: Typing Stubs for SciPy -
scipy.stats.bootstrap
now emits aFutureWarning
if the shapes of the
input arrays do not agree. Broadcast the arrays to the same batch shape
(i.e. for all dimensions except those specified by theaxis
argument)
to avoid the warning. Broadcasting will be performed automatically in the
future. -
SciPy endorsed SPEC-7,
which proposes arng
argument to control pseudorandom number generation
(PRNG) in a standard way, replacing legacy arguments likeseed
and
random_sate
. In many cases, use ofrng
will change the behavior of
the function unless the argument is already an instance of
numpy.random.Generator
.-
Effective in SciPy
1.15.0
:- The
rng
argument has been added to the following functions:
scipy.cluster.vq.kmeans
,scipy.cluster.vq.kmeans2
,
scipy.interpolate.BarycentricInterpolator
,
scipy.interpolate.barycentric_interpolate
,
scipy.linalg.clarkson_woodruff_transform
,
scipy.optimize.basinhopping
,
scipy.optimize.differential_evolution
,scipy.optimize.dual_annealing
,
scipy.optimize.check_grad
,scipy.optimize.quadratic_assignment
,
scipy.sparse.random
,scipy.sparse.random_array
,scipy.sparse.rand
,
scipy.sparse.linalg.svds
,scipy.spatial.transform.Rotation.random
,
scipy.spatial.distance.directed_hausdorff
,
scipy.stats.goodness_of_fit
,scipy.stats.BootstrapMethod
,
scipy.stats.PermutationMethod
,scipy.stats.bootstrap
,
scipy.stats.permutation_test
,scipy.stats.dunnett
, all
scipy.stats.qmc
classes that consume random numbers, and
scipy.stats.sobol_indices
. - When passed by keyword, the
rng
argument will follow the SPEC 7
standard behavior: the argument will be normalized with
np.random.default_rng
before being used. - When passed by position or legacy keyword, the behavior of the argument
will remain unchanged (for now).
- The
-
It is planned that in
1.17.0
the legacy argument will start emitting
warnings, and that in1.19.0
the default behavior will change. -
In all cases, users can avoid future disruption by proactively passing
an instance ofnp.random.Generator
by keywordrng
. For details,
see SPEC-7.
-
-
The SciPy build no longer adds
-std=legacy
for Fortran code,
except when using Gfortran. This avoids problems with the new Flang and
AMD Fortran compilers. It may make new build warnings appear for other
compilers - if so, please file an issue. -
scipy.signal.sosfreqz
has been renamed toscipy.signal.freqz_sos
.
New code should use the new name. The old name is maintained as an alias for
backwards compatibility. -
Testing thread-safety improvements related to Python
3.13t
have been
made in:scipy.special
,scipy.spatial
,scipy.sparse
,
scipy.interpolate
.
Authors (commits)
- endolith (4)
- h-vetinari (62)
- a-drenaline (1) +
- Afleloup (1) +
- Ahmad Alkadri (1) +
- Luiz Eduardo Amaral (3) +
- Virgile Andreani (3)
- Isaac Alonso Asensio (2) +
- Matteo Bachetti (1) +
- Arash Badie-Modiri (1) +
- Arnaud Baguet (1) +
- Soutrik Bandyopadhyay (1) +
- Ankit Barik (1) +
- Christoph Baumgarten (1)
- Nickolai Belakovski (3)
- Krishan Bhasin (1) +
- Jake Bowhay (89)
- Michael Bratsch (2) +
- Matthew Brett (1)
- Keith Briggs (1) +
- Olly Britton (145) +
- Dietrich Brunn (11)
- Clemens Brunner (1)
- Evgeni Burovski (185)
- Matthias Bussonnier (7)
- CJ Carey (32)
- Cesar Carrasco (4) +
- Hood Chatham (1)
- Aadya Chinubhai (1)
- Alessandro Chitarrini (1) +
- Thibault de Coincy (1) +
- Lucas Colley (217)
- Martin Diehl (1) +
- Djip007 (1) +
- Kevin Doshi (2) +
- Michael Dunphy (2)
- Andy Everall (1) +
- Thomas J. Fan (2)
- fancidev (60)
- Sergey Fedorov (2) +
- Sahil Garje (1) +
- Gabriel Gerlero (2)
- Yotam Gingold (1) +
- Ralf Gommers (110)
- Rohit Goswami (62)
- Anil Gurses (1) +
- Oscar Gustafsson (1) +
- Matt Haberland (389)
- Matt Hall (1) +
- Joren Hammudoglu (6) +
- CY Han (1) +
- Daniel Isaac (4) +
- Maxim Ivanov (1)
- Jakob Jakobson (2)
- Janez Demšar (4) +
- Chris Jerdonek (2) +
- Adam Jones (4) +
- Aditi Juneja (1) +
- Nuri Jung (1) +
- Guus Kamphuis (1) +
- Aditya Karumanchi (2) +
- Robert Kern (5)
- Agriya Khetarpal (11)
- Andrew Knyazev (7)
- Gideon Genadi Kogan (1) +
- Damien LaRocque (1) +
- Eric Larson (10)
- Gregory R. Lee (4)
- Linfye (1) +
- Boyu Liu (1) +
- Drew Allan Loney (1) +
- Christian Lorentzen (1)
- Loïc Estève (2)
- Smit Lunagariya (1)
- Henry Lunn (1) +
- Marco Maggi (4)
- Lauren Main (1) +
- Martin Spišák (1) +
- Mateusz Sokół (4)
- Jan-Kristian Mathisen (1) +
- Nikolay Mayorov (2)
- Nicholas McKibben (1)
- Melissa Weber Mendonça (62)
- João Mendes (10)
- Gian Marco Messa (1) +
- Samuel Le Meur-Diebolt (1) +
- Michał Górny (2)
- Naoto Mizuno (2)
- Nicolas Mokus (2)
- musvaage (18) +
- Andrew Nelson (88)
- Jens Hedegaard Nielsen (1) +
- Roman Nigmatullin (8) +
- Nick ODell (37)
- Yagiz Olmez (4)
- Matti Picus (9)
- Diogo Pires (5) +
- Ilhan Polat (96)
- Zachary Potthoff (1) +
- Tom M. Ragonneau (2)
- Peter Ralph (1) +
- Stephan Rave (1) +
- Tyler Reddy (182)
- redha2404 (2) +
- Ritvik1sharma (1) +
- Érico Nogueira Rolim (1) +
- Heshy Roskes (1)
- Pamphile Roy (34)
- Mikhail Ryazanov (1) +
- Sina Saber (1) +
- Atsushi Sakai (1)
- Clemens Schmid (1) +
- Daniel Schmitz (17)
- Moritz Schreiber (1) +
- Dan Schult (91)
- Searchingdays (1) +
- Matias Senger (1) +
- Scott Shambaugh (1)
- Zhida Shang (1) +
- Sheila-nk (4)
- Romain Simon (2) +
- Gagandeep Singh (31)
- Albert Steppi (40)
- Kai Striega (1)
- Anushka Suyal (143) +
- Alex Szatmary (1)
- Svetlin Tassev (1) +
- Ewout ter Hoeven (1)
- Tibor Völcker (4) +
- Kanishk Tiwari (1) +
- Yusuke Toyama (1) +
- Edgar Andrés Margffoy Tuay (124)
- Adam Turner (2) +
- Nicole Vadot (1) +
- Andrew Valentine (1)
- Christian Veenhuis (2)
- vfdev (2) +
- Pauli Virtanen (2)
- Simon Waldherr (1) +
- Stefan van der Walt (2)
- Warren Weckesser (23)
- Anreas Weh (1)
- Benoît Wygas (2) +
- Pavadol Yamsiri (3) +
- ysard (1) +
- Xiao Yuan (2)
- Irwin Zaid (12)
- Gang Zhao (1)
- ਗਗਨਦੀਪ ਸਿੰਘ (Gagandeep Singh) (10)
A total of 149 people contributed to this release.
People with a “+” by their names contributed a patch for the first time.
This list of names is automatically generated, and may not be fully complete.
Complete issue and PR lists are available in the raw release notes available at https://github.com/scipy/scipy/releases/download/v1.15.0rc2/README.txt
Checksums
MD5
91712b202e4aaba2e24b7685b6cbc2d9 Changelog
99193b45efb17b3aa649594075d24cc9 README.txt
de017ce8a4a57fcef82d8e9470d0a13a scipy-1.15.0rc2-cp310-cp310-macosx_10_13_x86_64.whl
18dbc712d270ff7a0eb21139fd206a94 scipy-1.15.0rc2-cp310-cp310-macosx_12_0_arm64.whl
4d598029ecaf482cd9f4af229401b0a6 scipy-1.15.0rc2-cp310-cp310-macosx_14_0_arm64.whl
19040592819f1675f6ac8e639a2ba363 scipy-1.15.0rc2-cp310-cp310-macosx_14_0_x86_64.whl
a59349eaa052dc314f11008363c44e8c scipy-1.15.0rc2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
616e5f6c13f3a0d6c5400810daa4b3e9 scipy-1.15.0rc2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
8178fac86aae810c706bd777d02fb1b9 scipy-1.15.0rc2-cp310-cp310-musllinux_1_2_x86_64.whl
beb951a5f4042cf9d2d03454a7ac0a2e scipy-1.15.0rc2-cp310-cp310-win_amd64.whl
7f11e4de91abcc8fccbbbf55b8aeda44 scipy-1.15.0rc2-cp311-cp311-macosx_10_13_x86_64.whl
52d1021765431b2e1de63e58d5d2fbf6 scipy-1.15.0rc2-cp311-cp311-macosx_12_0_arm64.whl
6c6de9c0b4416dd01a8099a727003ca9 scipy-1.15.0rc2-cp311-cp311-macosx_14_0_arm64.whl
93f12af706e2e9bc340a21ac0f91e88a scipy-1.15.0rc2-cp311-cp311-macosx_14_0_x86_64.whl
706c7f25669bfa78d0b64c7ba0c4ee27 scipy-1.15.0rc2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2b19e0269ef035249529ad6eaa32dbb0 scipy-1.15.0rc2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
474cd60524956250672e01cab35221e5 scipy-1.15.0rc2-cp311-cp311-musllinux_1_2_x86_64.whl
b68e5d57ce71d33d8ad067cbef4f9570 scipy-1.15.0rc2-cp311-cp311-win_amd64.whl
31818c87e270e756bc881987c64d70d1 scipy-1.15.0rc2-cp312-cp312-macosx_10_13_x86_64.whl
aaf1ac6b38fedd1ba697ab44ee4ff44a scipy-1.15.0rc2-cp312-cp312-macosx_12_0_arm64.whl
f3a2f76145cf68d8f1c098dfb090d9d1 scipy-1.15.0rc2-cp312-cp312-macosx_14_0_arm64.whl
992f964ca59035c0c05bd7ccc34085d3 scipy-1.15.0rc2-cp312-cp312-macosx_14_0_x86_64.whl
2aaf73e202aba7b2fbb8dbf726fa2b87 scipy-1.15.0rc2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e0484a72f913b5d25462de15ab717bda scipy-1.15.0rc2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e078709f2b58b6f2193cc480af03876f scipy-1.15.0rc2-cp312-cp312-musllinux_1_2_x86_64.whl
7bd0e7a0bb9133135690c161026e7822 scipy-1.15.0rc2-cp312-cp312-win_amd64.whl
be8184ada43039e03697bc76d275c393 scipy-1.15.0rc2-cp313-cp313-macosx_10_13_x86_64.whl
a75a16382cf980bf804f5909acc50822 scipy-1.15.0rc2-cp313-cp313-macosx_12_0_arm64.whl
082889ff17c4eda64ca24dedf08e8ebe scipy-1.15.0rc2-cp313-cp313-macosx_14_0_arm64.whl
d2e032f7ed06d263f497fb0aba30b230 scipy-1.15.0rc2-cp313-cp313-macosx_14_0_x86_64.whl
cf8d772e273d83f956842d84d8d3b0ee scipy-1.15.0rc2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7b08188c60cf69b9a0a31359dace0598 scipy-1.15.0rc2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3ecc2184d5d5fae3631b96f58eccbba9 scipy-1.15.0rc2-cp313-cp313-musllinux_1_2_x86_64.whl
ab8858121f835338216a1dcc53a975d9 scipy-1.15.0rc2-cp313-cp313-win_amd64.whl
cb8fa930f43f5de0cfe391b4ef8c13b3 scipy-1.15.0rc2-cp313-cp313t-macosx_10_13_x86_64.whl
594348a625286a7b43b95bb387392bd7 scipy-1.15.0rc2-cp313-cp313t-macosx_12_0_arm64.whl
3c6ccf14bc8e4e2b9887f212ad67f61b scipy-1.15.0rc2-cp313-cp313t-macosx_14_0_arm64.whl
06ebb3a7e5b70690f9a0446ad11be150 scipy-1.15.0rc2-cp313-cp313t-macosx_14_0_x86_64.whl
65c89af8ab3d68f1586cfd5058d0ffc8 scipy-1.15.0rc2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e052a3019fb87664ac5217852490ed1e scipy-1.15.0rc2-cp313-cp313t-musllinux_1_2_x86_64.whl
f97443465242c7f8f2168cb2fdf5be05 scipy-1.15.0rc2-cp313-cp313t-win_amd64.whl
SHA256
0e6e79c28e48606d9815a91d358c21ee985912fd5f75272358e99abecd03f5c1 Changelog
a1e45376967ad492b6179d6d8710a98769d2b7341357030feff0404f2091df8d README.txt
4cd9b6ed29bbbf49a9bdd545ed7674e7051be4cb878912e0688d844203883dc2 scipy-1.15.0rc2-cp310-cp310-macosx_10_13_x86_64.whl
d85927f8627d41eced6fee81eabc6dbfb79ba1cc32787f206df0a9e0a577a2a2 scipy-1.15.0rc2-cp310-cp310-macosx_12_0_arm64.whl
8984b4ec0ebd0d37491873195b3f0b76fce4bf54f32664dd1a91469cc9691da8 scipy-1.15.0rc2-cp310-cp310-macosx_14_0_arm64.whl
dcf7f7d8ff031f778e59aa347cc11fc75b686c3c86e24078d6af739140399f67 scipy-1.15.0rc2-cp310-cp310-macosx_14_0_x86_64.whl
c76fdf424dce95b4a53e7b2361155724917452faf25c4ebb59236dc242a11b1b scipy-1.15.0rc2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a9f6a7566ae2ad107da84d5c7803c0515d1da7367e249bc45530ac4eae87a39b scipy-1.15.0rc2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
4854237709458760bac6b019c7da2f324dd586fcf1b1cb7785359a9f9c92e954 scipy-1.15.0rc2-cp310-cp310-musllinux_1_2_x86_64.whl
c0d03586a147568c253ee7e6b4a42928e7ee770cbe0e528973e3d4ee18c000f8 scipy-1.15.0rc2-cp310-cp310-win_amd64.whl
94b7dcc4f50d8b092d48e527ddf75118e7a2caade72a657e03c4997e7858e130 scipy-1.15.0rc2-cp311-cp311-macosx_10_13_x86_64.whl
2f65762dce474325bb8e7f1279f83d3221e395b4795da5ce1e26f1b3c3f2d9b6 scipy-1.15.0rc2-cp311-cp311-macosx_12_0_arm64.whl
8b25fe034cd816ce3b40403b348241b656397739c91e67add7ac1d90d3e7bd5a scipy-1.15.0rc2-cp311-cp311-macosx_14_0_arm64.whl
9fd3f26603909378885baaee713bee2638f1868906050a6d3bf8637c4729767f scipy-1.15.0rc2-cp311-cp311-macosx_14_0_x86_64.whl
32c3cc072224917dc5d6b7fc66ad4e5a8d4bb13b08a9b71bb6a1a57a3c67524f scipy-1.15.0rc2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
abedfb91a079683941e3a29aaeedd25507344f8e29aa5c4ad4a91e59eee5773f scipy-1.15.0rc2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
18ac5cf2392487ad4a4f8f3494350145ba07cdaa7bc365231533c6fc1d306529 scipy-1.15.0rc2-cp311-cp311-musllinux_1_2_x86_64.whl
2fedab6706643b5ae6b0688ccf5b5f664b181be15b8612f2f280ff1c3481506f scipy-1.15.0rc2-cp311-cp311-win_amd64.whl
d639d6bbfa9d7da858a464d00fd0a2a2122149eaa1436f6619b2045810a3c0a8 scipy-1.15.0rc2-cp312-cp312-macosx_10_13_x86_64.whl
579cd378f11999ceab0e205a9866dcb7b7af1ec66f3a4692d30d3e081eb5cc63 scipy-1.15.0rc2-cp312-cp312-macosx_12_0_arm64.whl
7e4a494a8aaf0f173d48ba3f2ad87305317e8bf899f378a89ae6397a9c9e2095 scipy-1.15.0rc2-cp312-cp312-macosx_14_0_arm64.whl
c8f2a3431702ff397c07b5112838da87a7af7790b42530b7854bead9f350ac5b scipy-1.15.0rc2-cp312-cp312-macosx_14_0_x86_64.whl
71f42601b91b766a3fd653c3bd9209f24141c54e6a3fb955d395d12c08f1a3a9 scipy-1.15.0rc2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
5bfed2bec94bfc6805ec28e7c28e192bca9be739cdb442adc8aa915ef9f3ecc8 scipy-1.15.0rc2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
1766cc370dd82e913f76315918ecf54a261e378eb4c99c6a6f6abf432afb22b2 scipy-1.15.0rc2-cp312-cp312-musllinux_1_2_x86_64.whl
5609dd6800a0d2532039393ec35c4535e3604db313927e3e33169a9963750cd3 scipy-1.15.0rc2-cp312-cp312-win_amd64.whl
ad5bef14a6c89dd02327b0b2a81aeadcaf8094bd7bf525af8f29cf590f266879 scipy-1.15.0rc2-cp313-cp313-macosx_10_13_x86_64.whl
505a2214c2f413891863dfabd0688614af3aad61fc2addd372e3142dbf545e2f scipy-1.15.0rc2-cp313-cp313-macosx_12_0_arm64.whl
da94621303b8909a37c9babad6a892b47c2ef58686b1755ed93b8faf4b818f89 scipy-1.15.0rc2-cp313-cp313-macosx_14_0_arm64.whl
bbe750574d9b3a43e1fbe6b7f4ac7a20ec3cc274eafa8d8258128550b4b3d6fa scipy-1.15.0rc2-cp313-cp313-macosx_14_0_x86_64.whl
df0c2bfcb90e1300f2295205c10e0686f0e86075a17e5fd429a41f998b5ef95b scipy-1.15.0rc2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e0cdbbf6b3c9cbe2bba9209009031245599e509f9f2b4a60cfe5f78819af6f70 scipy-1.15.0rc2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
688d4d4ce08a77293078769c1b1a7d54d4a76dd9c9f89bad22777a26e7837162 scipy-1.15.0rc2-cp313-cp313-musllinux_1_2_x86_64.whl
1d69e21fba1128aefa1d079e8ec0c000b288b525b1877806923cc3856e953898 scipy-1.15.0rc2-cp313-cp313-win_amd64.whl
b341bfa836ceff4ec95e7b0369d084a7203798f55a78d4039880bfd90e116035 scipy-1.15.0rc2-cp313-cp313t-macosx_10_13_x86_64.whl
eb3057ded4bb6681aca9369382138b2b516e7c55ad235975b263e1413608999e scipy-1.15.0rc2-cp313-cp313t-macosx_12_0_arm64.whl
b98a329628cae98339fbe61ddfb46d6da6aebe5ca9cad642566964dcc3c7bacf scipy-1.15.0rc2-cp313-cp313t-macosx_14_0_arm64.whl
21a1c7a155bcaf9d7a2896b3c9045d2bb70f0579e4e0839ee0da6b8ee80a5bc3 scipy-1.15.0rc2-cp313-cp313t-macosx_14_0_x86_64.whl
a01673d84eaf656a2a074736c04411c4c782c91a51132c99e0fc3c8b8c9f8056 scipy-1.15.0rc2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
d8994499152d435034d0bd1e56a372bbafd35115aaa9f3c9aa99468e8a8d8af1 scipy-1.15.0rc2-cp313-cp313t-musllinux_1_2_x86_64.whl
f2d80cdb9bfe4c74be66beb7d06dcad99ca04cbc6087673b7d2ec7b2672270bc scipy-1.15.0rc2-cp313-cp313t-win_amd64.whl