Hi all,
On behalf of the SciPy development team, I’m pleased to announce the release of SciPy 1.15.0. The release includes Python 3.13 free-threading wheels on PyPI.
Sources and binaries for this release are available at:
https://github.com/scipy/scipy/releases/tag/v1.15.0
and at: https://pypi.org/project/scipy/1.15.0/
One of a few ways to install this release with pip:
pip install scipy==1.15.0
SciPy 1.15.0 Release Notes
SciPy 1.15.0 is the culmination of 6 months of hard work. It contains
many new features, numerous bug-fixes, improved test coverage and better
documentation. There have been a number of deprecations and API changes
in this release, which are documented below. All users are encouraged to
upgrade to this release, as there are a large number of bug-fixes and
optimizations. Before upgrading, we recommend that users check that
their own code does not use deprecated SciPy functionality (to do so,
run your code with python -Wd and check for DeprecationWarning s).
Our development attention will now shift to bug-fix releases on the
1.15.x branch, and on adding new features on the main branch.
This release requires Python 3.10-3.13 and NumPy 1.23.5 or greater.
Highlights of this release
-
Sparse arrays are now fully functional for 1-D and 2-D arrays. We recommend
that all new code use sparse arrays instead of sparse matrices and that
developers start to migrate their existing code from sparse matrix to sparse
array:migration_to_sparray. Bothsparse.linalgandsparse.csgraph
work with either sparse matrix or sparse array and work internally with
sparse array. -
Sparse arrays now provide basic support for n-D arrays in the COO format
includingadd,subtract,reshape,transpose,matmul,
dot,tensordotand others. More functionality is coming in future
releases. -
Preliminary support for free-threaded Python 3.13.
-
New probability distribution features in
scipy.statscan be used to improve
the speed and accuracy of existing continuous distributions and perform new
probability calculations. -
Several new features support vectorized calculations with Python Array API
Standard compatible input (see “Array API Standard Support” below):scipy.differentiateis a new top-level submodule for accurate
estimation of derivatives of black box functions.scipy.optimize.elementwisecontains new functions for root-finding and
minimization of univariate functions.scipy.integrateoffers new functionscubature,tanhsinh, and
nsumfor multivariate integration, univariate integration, and
univariate series summation, respectively.
-
scipy.interpolate.AAAadds the AAA algorithm for barycentric rational
approximation of real or complex functions. -
scipy.specialadds new functions offering improved Legendre function
implementations with a more consistent interface.
New features
scipy.differentiate introduction
The new scipy.differentiate sub-package contains functions for accurate
estimation of derivatives of black box functions.
- Use
scipy.differentiate.derivativefor first-order derivatives of
scalar-in, scalar-out functions. - Use
scipy.differentiate.jacobianfor first-order partial derivatives of
vector-in, vector-out functions. - Use
scipy.differentiate.hessianfor second-order partial derivatives of
vector-in, scalar-out functions.
All functions use high-order finite difference rules with adaptive (real)
step size. To facilitate batch computation, these functions are vectorized
and support several Array API compatible array libraries in addition to NumPy
(see “Array API Standard Support” below).
scipy.integrate improvements
- The new
scipy.integrate.cubaturefunction supports multidimensional
integration, and has support for approximating integrals with
one or more sets of infinite limits. scipy.integrate.tanhsinhis now exposed for public use, allowing
evaluation of a convergent integral using tanh-sinh quadrature.scipy.integrate.nsumevaluates finite and infinite series and their
logarithms.scipy.integrate.lebedev_rulecomputes abscissae and weights for
integration over the surface of a sphere.- The
QUADPACKFortran77 package has been ported to C.
scipy.interpolate improvements
scipy.interpolate.AAAadds the AAA algorithm for barycentric rational
approximation of real or complex functions.scipy.interpolate.FloaterHormannInterpolatoradds barycentric rational
interpolation.- New functions
scipy.interpolate.make_splrepand
scipy.interpolate.make_splprepimplement construction of smoothing splines.
The algorithmic content is equivalent to FITPACK (splrepandsplprep
functions, and*UnivariateSplineclasses) and the user API is consistent
withmake_interp_spline: these functions receive data arrays and return
ascipy.interpolate.BSplineinstance. - New generator function
scipy.interpolate.generate_knotsimplements the
FITPACK strategy for selecting knots of a smoothing spline given the
smoothness parameter,s. The function exposes the internal logic of knot
selection thatsplrepand*UnivariateSplinewas using.
scipy.linalg improvements
scipy.linalg.interpolativeFortran77 code has been ported to Cython.scipy.linalg.solvesupports several new values for theassume_a
argument, enabling faster computation for diagonal, tri-diagonal, banded, and
triangular matrices. Also, whenassume_ais left unspecified, the
function now automatically detects and exploits diagonal, tri-diagonal,
and triangular structures.scipy.linalgmatrix creation functions (scipy.linalg.circulant,
scipy.linalg.companion,scipy.linalg.convolution_matrix,
scipy.linalg.fiedler,scipy.linalg.fiedler_companion, and
scipy.linalg.leslie) now support batch
matrix creation.scipy.linalg.funmis faster.scipy.linalg.orthogonal_procrustesnow supports complex input.- Wrappers for the following LAPACK routines have been added in
scipy.linalg.lapack:?lantr,?sytrs,?hetrs,?trcon,
and?gtcon. scipy.linalg.expmwas rewritten in C.scipy.linalg.null_spacenow accepts the new argumentsoverwrite_a,
check_finite, andlapack_driver.id_distFortran code was rewritten in Cython.
scipy.ndimage improvements
- Several additional filtering functions now support an
axesargument
that specifies which axes of the input filtering is to be performed on.
These includecorrelate,convolve,generic_laplace,laplace,
gaussian_laplace,derivative2,generic_gradient_magnitude,
gaussian_gradient_magnitudeandgeneric_filter. - The binary and grayscale morphology functions now support an
axes
argument that specifies which axes of the input filtering is to be performed
on. scipy.ndimage.rank_filtertime complexity has improved fromnto
log(n).
scipy.optimize improvements
- The vendored HiGHS library has been upgraded from
1.4.0to1.8.0,
bringing accuracy and performance improvements to solvers. - The
MINPACKFortran77 package has been ported to C. - The
L-BFGS-BFortran77 package has been ported to C. - The new
scipy.optimize.elementwisenamespace includes functions
bracket_root,find_root,bracket_minimum, andfind_minimum
for root-finding and minimization of univariate functions. To facilitate
batch computation, these functions are vectorized and support several
Array API compatible array libraries in addition to NumPy (see
“Array API Standard Support” below). Compared to existing functions (e.g.
scipy.optimize.root_scalarandscipy.optimize.minimize_scalar),
these functions can offer speedups of over 100x when used with NumPy arrays,
and even greater gains are possible with other Array API Standard compatible
array libraries (e.g. CuPy). scipy.optimize.differential_evolutionnow supports more general use of
workers, such as passing a map-like callable.scipy.optimize.nnlswas rewritten in Cython.HessianUpdateStrategynow supports__matmul__.
scipy.signal improvements
- Add functionality of complex-valued waveforms to
signal.chirp(). scipy.signal.lombscarglehas two new arguments,weightsand
floating_mean, enabling sample weighting and removal of an unknown
y-offset independently for each frequency. Additionally, thenormalize
argument includes a new option to return the complex representation of the
amplitude and phase.- New function
scipy.signal.envelopefor computation of the envelope of a
real or complex valued signal.
scipy.sparse improvements
- A migration guide is now available for
moving from sparse.matrix to sparse.array in your code/library. - Sparse arrays now support indexing for 1-D and 2-D arrays. So, sparse
arrays are now fully functional for 1-D and 2D. - n-D sparse arrays in COO format can now be constructed, reshaped and used
for basic arithmetic. - New functions
sparse.linalg.is_sptriangularand
sparse.linalg.spbandwidthmimic the existing dense tools
linalg.is_triangularandlinalg.bandwidth. sparse.linalgandsparse.csgraphnow work with sparse arrays. Be
careful that your index arrays are 32-bit. We are working on 64bit support.- The vendored
ARPACKlibrary has been upgraded to version3.9.1. - COO, CSR, CSC and LIL formats now support the
axisargument for
count_nonzero. - Sparse arrays and matrices may now raise errors when initialized with
incompatible data types, such asfloat16. min,max,argmin, andargmaxnow support computation
over nonzero elements only via the newexplicitargument.- New functions
get_index_dtypeandsafely_cast_index_arraysare
available to facilitate index array casting insparse.
scipy.spatial improvements
Rotation.concatenatenow accepts a bareRotationobject, and will
return a copy of it.
scipy.special improvements
-
New functions offering improved Legendre function implementations with a
more consistent interface. See respective docstrings for more information.scipy.special.legendre_p,scipy.special.legendre_p_allscipy.special.assoc_legendre_p,scipy.special.assoc_legendre_p_allscipy.special.sph_harm_y,scipy.special.sph_harm_y_allscipy.special.sph_legendre_p,scipy.special.sph_legendre_p_all,
-
The factorial functions
special.{factorial,factorial2,factorialk}now
offer an extension to the complex domain by passing the kwarg
extend='complex'. This is opt-in because it changes the values for
negative inputs (which by default return 0), as well as for some integers
(in the case offactorial2andfactorialk; for more details,
check the respective docstrings). -
scipy.special.zetanow defines the Riemann zeta function on the complex
plane. -
scipy.special.softpluscomputes the softplus function -
The spherical Bessel functions (
scipy.special.spherical_jn,
scipy.special.spherical_yn,scipy.special.spherical_in, and
scipy.special.spherical_kn) now support negative arguments with real dtype. -
scipy.special.logsumexpnow preserves precision when one element of the
sum has magnitude much bigger than the rest. -
The accuracy of several functions has been improved:
scipy.special.ncfdtr,scipy.special.nctdtr, and
scipy.special.gdtribhave been improved throughout the domain.scipy.special.hyperuis improved for the case ofb=1, smallx,
and smalla.scipy.special.logitis improved near the argumentp=0.5.scipy.special.rel_entris improved whenx/yoverflows, underflows,
or is close to1.
-
scipy.special.ndtris now more efficient forsqrt(2)/2 < |x| < 1.
scipy.stats improvements
-
A new probability distribution infrastructure has been added for the
implementation of univariate, continuous distributions. It has several
speed, accuracy, memory, and interface advantages compared to the
previous infrastructure. Seerv_infrastructurefor a tutorial.- Use
scipy.stats.make_distributionto treat an existing continuous
distribution (e.g.scipy.stats.norm) with the new infrastructure.
This can improve the speed and accuracy of existing distributions,
especially those with methods not overridden with distribution-specific
formulas. scipy.stats.Normalandscipy.stats.Uniformare pre-defined classes
to represent the normal and uniform distributions, respectively.
Their interfaces may be faster and more convenient than those produced by
make_distribution.scipy.stats.Mixturecan be used to represent mixture distributions.
- Use
-
Instances of
scipy.stats.Normal,scipy.stats.Uniform, and the classes
returned byscipy.stats.make_distributionare supported by several new
mathematical transformations.scipy.stats.truncatefor truncation of the support.scipy.stats.order_statisticfor the order statistics of a given number
of IID random variables.scipy.stats.abs,scipy.stats.exp, andscipy.stats.log. For example,
scipy.stats.abs(Normal())is distributed according to the folded normal
andscipy.stats.exp(Normal())is lognormally distributed.
-
The new
scipy.stats.lmomentcalculates sample l-moments and l-moment
ratios. Notably, these sample estimators are unbiased. -
scipy.stats.chatterjeexicomputes the Xi correlation coefficient, which
can detect nonlinear dependence. The function also performs a hypothesis
test of independence between samples. -
scipy.stats.wilcoxonhas improved method resolution logic for the default
method='auto'. Other values ofmethodprovided by the user are now
respected in all cases, and the method argumentapproxhas been
renamed toasymptoticfor consistency with similar functions. (Use of
approxis still allowed for backward compatibility.) -
There are several new probability distributions:
scipy.stats.dpareto_lognormrepresents the double Pareto lognormal
distribution.scipy.stats.landaurepresents the Landau distribution.scipy.stats.normal_inverse_gammarepresents the normal-inverse-gamma
distribution.scipy.stats.poisson_binomrepresents the Poisson binomial distribution.
-
Batch calculation with
scipy.stats.alexandergovernand
scipy.stats.combine_pvaluesis faster. -
scipy.stats.chisquareadded an argumentsum_check. By default, the
function raises an error when the sum of expected and obseved frequencies
are not equal; settingsum_check=Falsedisables this check to
facilitate hypothesis tests other than Pearson’s chi-squared test. -
The accuracy of several distribution methods has been improved, including:
scipy.stats.nctmethodpdfscipy.stats.crystalballmethodsfscipy.stats.geommethodrvsscipy.stats.cauchymethodslogpdf,pdf,ppfandisf- The
logcdfand/orlogsfmethods of distributions that do not
override the generic implementation of these methods, including
scipy.stats.beta,scipy.stats.betaprime,scipy.stats.cauchy,
scipy.stats.chi,scipy.stats.chi2,scipy.stats.exponweib,
scipy.stats.gamma,scipy.stats.gompertz,scipy.stats.halflogistic,
scipy.stats.hypsecant,scipy.stats.invgamma,scipy.stats.laplace,
scipy.stats.levy,scipy.stats.loggamma,scipy.stats.maxwell,
scipy.stats.nakagami, andscipy.stats.t.
-
scipy.stats.qmc.PoissonDisknow accepts lower and upper bounds
parametersl_boundsandu_bounds. -
scipy.stats.fisher_exactnow supports two-dimensional tables with shapes
other than(2, 2).
Preliminary Support for Free-Threaded CPython 3.13
SciPy 1.15 has preliminary support for the free-threaded build of CPython
3.13. This allows SciPy functionality to execute in parallel with Python
threads
(see the threading stdlib module). This support was enabled by fixing a
significant number of thread-safety issues in both pure Python and
C/C++/Cython/Fortran extension modules. Wheels are provided on PyPI for this
release; NumPy >=2.1.3 is required at runtime. Note that building for a
free-threaded interpreter requires a recent pre-release or nightly for Cython
3.1.0.
Support for free-threaded Python does not mean that SciPy is fully thread-safe.
Please see scipy_thread_safety for more details.
If you are interested in free-threaded Python, for example because you have a
multiprocessing-based workflow that you are interested in running with Python
threads, we encourage testing and experimentation. If you run into problems
that you suspect are because of SciPy, please open an issue, checking first if
the bug also occurs in the “regular” non-free-threaded CPython 3.13 build.
Many threading bugs can also occur in code that releases the GIL; disabling
the GIL only makes it easier to hit threading bugs.
Array API Standard Support
Experimental support for array libraries other than NumPy has been added to
existing sub-packages in recent versions of SciPy. Please consider testing
these features by setting an environment variable SCIPY_ARRAY_API=1 and
providing PyTorch, JAX, ndonnx, or CuPy arrays as array arguments. Features
with support added for SciPy 1.15.0 include:
- All functions in
scipy.differentiate(new sub-package) - All functions in
scipy.optimize.elementwise(new namespace) scipy.optimize.rosen,scipy.optimize.rosen_der, and
scipy.optimize.rosen_hessscipy.special.logsumexpscipy.integrate.trapezoidscipy.integrate.tanhsinh(newly public function)scipy.integrate.cubature(new function)scipy.integrate.nsum(new function)scipy.special.chdtr,scipy.special.betainc, andscipy.special.betainccscipy.stats.boxcox_llfscipy.stats.differential_entropyscipy.stats.zmap,scipy.stats.zscore, andscipy.stats.gzscorescipy.stats.tmean,scipy.stats.tvar,scipy.stats.tstd,
scipy.stats.tsem,scipy.stats.tmin, andscipy.stats.tmaxscipy.stats.gmean,scipy.stats.hmeanandscipy.stats.pmeanscipy.stats.combine_pvaluesscipy.stats.ttest_ind,scipy.stats.ttest_relscipy.stats.directional_statsscipy.ndimagefunctions will now delegate tocupyx.scipy.ndimage,
and for other backends will transit via NumPy arrays on the host.
Deprecated features and future changes
- Functions
scipy.linalg.interpolative.randand
scipy.linalg.interpolative.seedhave been deprecated and will be removed
in SciPy1.17.0. - Complex inputs to
scipy.spatial.distance.cosineand
scipy.spatial.distance.correlationhave been deprecated and will raise
an error in SciPy1.17.0. scipy.spatial.distance.kulczynski1and
scipy.spatial.distance.sokalmichenerwere deprecated and will be removed
in SciPy1.17.0.scipy.stats.find_repeatsis deprecated and will be
removed in SciPy1.17.0. Please use
numpy.unique/numpy.unique_countsinstead.scipy.linalg.kronis deprecated in favour ofnumpy.kron.- Using object arrays and longdouble arrays in
scipy.signal
convolution/correlation functions (scipy.signal.correlate,
scipy.signal.convolveandscipy.signal.choose_conv_method) and
filtering functions (scipy.signal.lfilter,scipy.signal.sosfilt) has
been deprecated and will be removed in SciPy1.17.0. scipy.stats.linregresshas deprecated one-argument use; the two
variables must be specified as separate arguments.scipy.stats.trapzis deprecated in favor ofscipy.stats.trapezoid.scipy.special.lpnis deprecated in favor ofscipy.special.legendre_p_all.scipy.special.lpmnandscipy.special.clpmnare deprecated in favor of
scipy.special.assoc_legendre_p_all.scipy.special.sph_harmhas been deprecated in favor of
scipy.special.sph_harm_y.- Multi-dimensional
randcarrays passed toscipy.linalg.toeplitz,
scipy.linalg.matmul_toeplitz, orscipy.linalg.solve_toeplitzwill be
treated as batches of 1-D coefficients beginning in SciPy1.17.0. - The
random_stateandpermutationsarguments of
scipy.stats.ttest_indare deprecated. Usemethodto perform a
permutation test, instead.
Expired Deprecations
- The wavelet functions in
scipy.signalhave been removed. This includes
daub,qmf,cascade,morlet,morlet2,ricker,
andcwt. Users should usepywaveletsinstead. scipy.signal.cmplx_sorthas been removed.scipy.integrate.quadratureandscipy.integrate.romberghave been
removed in favour ofscipy.integrate.quad.scipy.stats.rvs_ratio_uniformshas been removed in favor of
scipy.stats.sampling.RatioUniforms.scipy.special.factorialnow raises an error for non-integer scalars when
exact=True.scipy.integrate.cumulative_trapezoidnow raises an error for values of
initialother than0andNone.- Complex dtypes now raise an error in
scipy.interpolate.Akima1DInterpolator
andscipy.interpolate.PchipInterpolator special.btdtrandspecial.btdtrihave been removed.- The default of the
exact=kwarg inspecial.factorialkhas changed
fromTruetoFalse. - All functions in the
scipy.miscsubmodule have been removed.
Backwards incompatible changes
interpolate.BSpline.integrateoutput is now always a numpy array.
Previously, for 1D splines the output was a python float or a 0D array
depending on the value of theextrapolateargument.scipy.stats.wilcoxonnow respects themethodargument provided by the
user. Previously, even ifmethod='exact'was specified, the function
would resort tomethod='approx'in some cases.scipy.integrate.AccuracyWarninghas been removed as the functions the
warning was emitted from (scipy.integrate.quadratureand
scipy.integrate.romberg) have been removed.
Other changes
-
A separate accompanying type stubs package,
scipy-stubs, will be made
available with the1.15.0release. Installation instructions are
available. -
scipy.stats.bootstrapnow emits aFutureWarningif the shapes of the
input arrays do not agree. Broadcast the arrays to the same batch shape
(i.e. for all dimensions except those specified by theaxisargument)
to avoid the warning. Broadcasting will be performed automatically in the
future. -
SciPy endorsed SPEC-7,
which proposes arngargument to control pseudorandom number generation
(PRNG) in a standard way, replacing legacy arguments likeseedand
random_sate. In many cases, use ofrngwill change the behavior of
the function unless the argument is already an instance of
numpy.random.Generator.-
Effective in SciPy
1.15.0:- The
rngargument has been added to the following functions:
scipy.cluster.vq.kmeans,scipy.cluster.vq.kmeans2,
scipy.interpolate.BarycentricInterpolator,
scipy.interpolate.barycentric_interpolate,
scipy.linalg.clarkson_woodruff_transform,
scipy.optimize.basinhopping,
scipy.optimize.differential_evolution,scipy.optimize.dual_annealing,
scipy.optimize.check_grad,scipy.optimize.quadratic_assignment,
scipy.sparse.random,scipy.sparse.random_array,scipy.sparse.rand,
scipy.sparse.linalg.svds,scipy.spatial.transform.Rotation.random,
scipy.spatial.distance.directed_hausdorff,
scipy.stats.goodness_of_fit,scipy.stats.BootstrapMethod,
scipy.stats.PermutationMethod,scipy.stats.bootstrap,
scipy.stats.permutation_test,scipy.stats.dunnett, all
scipy.stats.qmcclasses that consume random numbers, and
scipy.stats.sobol_indices. - When passed by keyword, the
rngargument will follow the SPEC 7
standard behavior: the argument will be normalized with
np.random.default_rngbefore being used. - When passed by position or legacy keyword, the behavior of the argument
will remain unchanged (for now).
- The
-
It is planned that in
1.17.0the legacy argument will start emitting
warnings, and that in1.19.0the default behavior will change. -
In all cases, users can avoid future disruption by proactively passing
an instance ofnp.random.Generatorby keywordrng. For details,
see SPEC-7.
-
-
The SciPy build no longer adds
-std=legacyfor Fortran code,
except when using Gfortran. This avoids problems with the new Flang and
AMD Fortran compilers. It may make new build warnings appear for other
compilers - if so, please file an issue. -
scipy.signal.sosfreqzhas been renamed toscipy.signal.freqz_sos.
New code should use the new name. The old name is maintained as an alias for
backwards compatibility. -
Testing thread-safety improvements related to Python
3.13thave been
made in:scipy.special,scipy.spatial,scipy.sparse,
scipy.interpolate.
Authors (commits)
- endolith (4)
- h-vetinari (62)
- a-drenaline (1) +
- Afleloup (1) +
- Ahmad Alkadri (1) +
- Luiz Eduardo Amaral (3) +
- Virgile Andreani (3)
- Isaac Alonso Asensio (2) +
- Matteo Bachetti (1) +
- Arash Badie-Modiri (1) +
- Arnaud Baguet (1) +
- Soutrik Bandyopadhyay (1) +
- Ankit Barik (1) +
- Christoph Baumgarten (1)
- Nickolai Belakovski (3)
- Krishan Bhasin (1) +
- Jake Bowhay (89)
- Michael Bratsch (2) +
- Matthew Brett (1)
- Keith Briggs (1) +
- Olly Britton (145) +
- Dietrich Brunn (11)
- Clemens Brunner (1)
- Evgeni Burovski (185)
- Matthias Bussonnier (7)
- CJ Carey (32)
- Cesar Carrasco (4) +
- Hood Chatham (1)
- Aadya Chinubhai (1)
- Alessandro Chitarrini (1) +
- Thibault de Coincy (1) +
- Lucas Colley (217)
- Martin Diehl (1) +
- Djip007 (1) +
- Kevin Doshi (2) +
- Michael Dunphy (2)
- Andy Everall (1) +
- Thomas J. Fan (2)
- fancidev (60)
- Sergey Fedorov (2) +
- Sahil Garje (1) +
- Gabriel Gerlero (2)
- Yotam Gingold (1) +
- Ralf Gommers (111)
- Rohit Goswami (62)
- Anil Gurses (1) +
- Oscar Gustafsson (1) +
- Matt Haberland (392)
- Matt Hall (1) +
- Joren Hammudoglu (6) +
- CY Han (1) +
- Daniel Isaac (4) +
- Maxim Ivanov (1)
- Jakob Jakobson (2)
- Janez Demšar (4) +
- Chris Jerdonek (2) +
- Adam Jones (4) +
- Aditi Juneja (1) +
- Nuri Jung (1) +
- Guus Kamphuis (1) +
- Aditya Karumanchi (2) +
- Robert Kern (5)
- Agriya Khetarpal (11)
- Andrew Knyazev (7)
- Gideon Genadi Kogan (1) +
- Damien LaRocque (1) +
- Eric Larson (10)
- Gregory R. Lee (4)
- Linfye (1) +
- Boyu Liu (1) +
- Drew Allan Loney (1) +
- Christian Lorentzen (1)
- Loïc Estève (2)
- Smit Lunagariya (1)
- Henry Lunn (1) +
- Marco Maggi (4)
- Lauren Main (1) +
- Martin Spišák (1) +
- Mateusz Sokół (4)
- Jan-Kristian Mathisen (1) +
- Nikolay Mayorov (2)
- Nicholas McKibben (1)
- Melissa Weber Mendonça (62)
- João Mendes (10)
- Gian Marco Messa (1) +
- Samuel Le Meur-Diebolt (1) +
- Michał Górny (2)
- Naoto Mizuno (2)
- Nicolas Mokus (2)
- musvaage (18) +
- Andrew Nelson (88)
- Jens Hedegaard Nielsen (1) +
- Roman Nigmatullin (8) +
- Nick ODell (37)
- Yagiz Olmez (4)
- Matti Picus (9)
- Diogo Pires (5) +
- Ilhan Polat (96)
- Zachary Potthoff (1) +
- Tom M. Ragonneau (2)
- Peter Ralph (1) +
- Stephan Rave (1) +
- Tyler Reddy (192)
- redha2404 (2) +
- Ritvik1sharma (1) +
- Érico Nogueira Rolim (1) +
- Heshy Roskes (1)
- Pamphile Roy (34)
- Mikhail Ryazanov (1) +
- Sina Saber (1) +
- Atsushi Sakai (1)
- Clemens Schmid (1) +
- Daniel Schmitz (17)
- Moritz Schreiber (1) +
- Dan Schult (91)
- Searchingdays (1) +
- Matias Senger (1) +
- Scott Shambaugh (1)
- Zhida Shang (1) +
- Sheila-nk (4)
- Romain Simon (2) +
- Gagandeep Singh (31)
- Albert Steppi (40)
- Kai Striega (1)
- Anushka Suyal (143) +
- Alex Szatmary (1)
- Svetlin Tassev (1) +
- Ewout ter Hoeven (1)
- Tibor Völcker (4) +
- Kanishk Tiwari (1) +
- Yusuke Toyama (1) +
- Edgar Andrés Margffoy Tuay (124)
- Adam Turner (2) +
- Nicole Vadot (1) +
- Andrew Valentine (1)
- Christian Veenhuis (2)
- vfdev (2) +
- Pauli Virtanen (2)
- Simon Waldherr (1) +
- Stefan van der Walt (2)
- Warren Weckesser (23)
- Anreas Weh (1)
- Benoît Wygas (2) +
- Pavadol Yamsiri (3) +
- ysard (1) +
- Xiao Yuan (2)
- Irwin Zaid (12)
- Gang Zhao (1)
- ਗਗਨਦੀਪ ਸਿੰਘ (Gagandeep Singh) (10)
A total of 149 people contributed to this release.
People with a “+” by their names contributed a patch for the first time.
This list of names is automatically generated, and may not be fully complete.
Complete issue and PR lists for this release are available in the raw release notes.
Checksums
MD5
960f2f68e8324d0e0bbb8224912d0d82 Changelog
d1c0545b8eb23b387d390477c5fddf61 README.txt
255e52945c6e36e4a7186384f94d0d37 scipy-1.15.0-cp310-cp310-macosx_10_13_x86_64.whl
8f493de83e6b235819a88cc9a6716faf scipy-1.15.0-cp310-cp310-macosx_12_0_arm64.whl
098b5c8719d73b2be7a4ffb52f6c0c97 scipy-1.15.0-cp310-cp310-macosx_14_0_arm64.whl
13487d4eb3e0aa2041f51120d0abb7fa scipy-1.15.0-cp310-cp310-macosx_14_0_x86_64.whl
dd68ad64fc715236e506a18fc447f25a scipy-1.15.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
d0e9b77a640ad6e86d1326ccb4c81287 scipy-1.15.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
9d3415665b8ed8aa8ff47abfcf0f06fd scipy-1.15.0-cp310-cp310-musllinux_1_2_x86_64.whl
884e5ce911b383c97cd3ac9c9be2c933 scipy-1.15.0-cp310-cp310-win_amd64.whl
30bb9a01160285712e8a4a6087d73cf7 scipy-1.15.0-cp311-cp311-macosx_10_13_x86_64.whl
d823f6c39dfed23d244ed454a4fca8b2 scipy-1.15.0-cp311-cp311-macosx_12_0_arm64.whl
0cc8387d881713b9334afd5008622e52 scipy-1.15.0-cp311-cp311-macosx_14_0_arm64.whl
1281267a1edc30d7fd114d7b4c9cf056 scipy-1.15.0-cp311-cp311-macosx_14_0_x86_64.whl
71ce9eb7612363d21d0dce8d4858d5f5 scipy-1.15.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
cffaaf9f18d19256c1728edddf63cd54 scipy-1.15.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3ce7df6b9c38a112545d26debc2f723b scipy-1.15.0-cp311-cp311-musllinux_1_2_x86_64.whl
05c7d296bad483643955ab6b98f0c09e scipy-1.15.0-cp311-cp311-win_amd64.whl
b2d579c23fedd9f54938ddb39893395d scipy-1.15.0-cp312-cp312-macosx_10_13_x86_64.whl
bc6f1069b8851b5ee03a57f13949c943 scipy-1.15.0-cp312-cp312-macosx_12_0_arm64.whl
5026095b52459767ae37c9b112c3849d scipy-1.15.0-cp312-cp312-macosx_14_0_arm64.whl
b4dc9857c6941c8f360d4cf141c53aba scipy-1.15.0-cp312-cp312-macosx_14_0_x86_64.whl
6f98bef9425cdf122dce390e1e7f83f0 scipy-1.15.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
9b4a8c4ad21f8e48aa2930654d86493e scipy-1.15.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
394e229e6616a78e21dd24c9b8d501bc scipy-1.15.0-cp312-cp312-musllinux_1_2_x86_64.whl
83502b397a474682d63eef4dc23da4b5 scipy-1.15.0-cp312-cp312-win_amd64.whl
e6360bee0d9e988cbeb4d11fbae21326 scipy-1.15.0-cp313-cp313-macosx_10_13_x86_64.whl
485671cd765d5dc2ff7e8bfc621c3db8 scipy-1.15.0-cp313-cp313-macosx_12_0_arm64.whl
5c4bbddc266e3f1cee3d8decec0ec469 scipy-1.15.0-cp313-cp313-macosx_14_0_arm64.whl
6bd15d2186dd457abd8bba705ee7f29d scipy-1.15.0-cp313-cp313-macosx_14_0_x86_64.whl
fbacc513cfc156b60d1e430b64ea4e91 scipy-1.15.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
6da8ae141a774b75219efcfc4988e32f scipy-1.15.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b3c9d0a585388a9da6d09895b494a031 scipy-1.15.0-cp313-cp313-musllinux_1_2_x86_64.whl
ad854ba52863d6dd3cbcfb3e666c1a67 scipy-1.15.0-cp313-cp313-win_amd64.whl
df35c7040a9b0a12f7bf714f598be966 scipy-1.15.0-cp313-cp313t-macosx_10_13_x86_64.whl
07dd455bfd9f3f191503d704b4cad021 scipy-1.15.0-cp313-cp313t-macosx_12_0_arm64.whl
a211a76d9467a354da80042444084323 scipy-1.15.0-cp313-cp313t-macosx_14_0_arm64.whl
07e497e948451e9ad9a696ac914ccfbb scipy-1.15.0-cp313-cp313t-macosx_14_0_x86_64.whl
cf9bf0bb6c8466f3051ea3bccca4260b scipy-1.15.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e718c9476837cae9f89b296e8a5ebdf1 scipy-1.15.0-cp313-cp313t-musllinux_1_2_x86_64.whl
faf7f6251da3d587febba56d03ce7376 scipy-1.15.0-cp313-cp313t-win_amd64.whl
SHA256
34a2e33ef4081bacd3331001e258ff86fc2a221977b0f283446a20b133024fdb Changelog
2cbc86846ffed466bf1d5a5add58a5c69e041252993395acea17632570d2f430 README.txt
aeac60d3562a7bf2f35549bdfdb6b1751c50590f55ce7322b4b2fc821dc27fca scipy-1.15.0-cp310-cp310-macosx_10_13_x86_64.whl
5abbdc6ede5c5fed7910cf406a948e2c0869231c0db091593a6b2fa78be77e5d scipy-1.15.0-cp310-cp310-macosx_12_0_arm64.whl
eb1533c59f0ec6c55871206f15a5c72d1fae7ad3c0a8ca33ca88f7c309bbbf8c scipy-1.15.0-cp310-cp310-macosx_14_0_arm64.whl
de112c2dae53107cfeaf65101419662ac0a54e9a088c17958b51c95dac5de56d scipy-1.15.0-cp310-cp310-macosx_14_0_x86_64.whl
2240e1fd0782e62e1aacdc7234212ee271d810f67e9cd3b8d521003a82603ef8 scipy-1.15.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
d35aef233b098e4de88b1eac29f0df378278e7e250a915766786b773309137c4 scipy-1.15.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
1b29e4fc02e155a5fd1165f1e6a73edfdd110470736b0f48bcbe48083f0eee37 scipy-1.15.0-cp310-cp310-musllinux_1_2_x86_64.whl
0e5b34f8894f9904cc578008d1a9467829c1817e9f9cb45e6d6eeb61d2ab7731 scipy-1.15.0-cp310-cp310-win_amd64.whl
46e91b5b16909ff79224b56e19cbad65ca500b3afda69225820aa3afbf9ec020 scipy-1.15.0-cp311-cp311-macosx_10_13_x86_64.whl
82bff2eb01ccf7cea8b6ee5274c2dbeadfdac97919da308ee6d8e5bcbe846443 scipy-1.15.0-cp311-cp311-macosx_12_0_arm64.whl
9c8254fe21dd2c6c8f7757035ec0c31daecf3bb3cffd93bc1ca661b731d28136 scipy-1.15.0-cp311-cp311-macosx_14_0_arm64.whl
c9624eeae79b18cab1a31944b5ef87aa14b125d6ab69b71db22f0dbd962caf1e scipy-1.15.0-cp311-cp311-macosx_14_0_x86_64.whl
d13bbc0658c11f3d19df4138336e4bce2c4fbd78c2755be4bf7b8e235481557f scipy-1.15.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
bdca4c7bb8dc41307e5f39e9e5d19c707d8e20a29845e7533b3bb20a9d4ccba0 scipy-1.15.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6f376d7c767731477bac25a85d0118efdc94a572c6b60decb1ee48bf2391a73b scipy-1.15.0-cp311-cp311-musllinux_1_2_x86_64.whl
61513b989ee8d5218fbeb178b2d51534ecaddba050db949ae99eeb3d12f6825d scipy-1.15.0-cp311-cp311-win_amd64.whl
5beb0a2200372b7416ec73fdae94fe81a6e85e44eb49c35a11ac356d2b8eccc6 scipy-1.15.0-cp312-cp312-macosx_10_13_x86_64.whl
fde0f3104dfa1dfbc1f230f65506532d0558d43188789eaf68f97e106249a913 scipy-1.15.0-cp312-cp312-macosx_12_0_arm64.whl
35c68f7044b4e7ad73a3e68e513dda946989e523df9b062bd3cf401a1a882192 scipy-1.15.0-cp312-cp312-macosx_14_0_arm64.whl
52475011be29dfcbecc3dfe3060e471ac5155d72e9233e8d5616b84e2b542054 scipy-1.15.0-cp312-cp312-macosx_14_0_x86_64.whl
5972e3f96f7dda4fd3bb85906a17338e65eaddfe47f750e240f22b331c08858e scipy-1.15.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
fe00169cf875bed0b3c40e4da45b57037dc21d7c7bf0c85ed75f210c281488f1 scipy-1.15.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
161f80a98047c219c257bf5ce1777c574bde36b9d962a46b20d0d7e531f86863 scipy-1.15.0-cp312-cp312-musllinux_1_2_x86_64.whl
327163ad73e54541a675240708244644294cb0a65cca420c9c79baeb9648e479 scipy-1.15.0-cp312-cp312-win_amd64.whl
0fcb16eb04d84670722ce8d93b05257df471704c913cb0ff9dc5a1c31d1e9422 scipy-1.15.0-cp313-cp313-macosx_10_13_x86_64.whl
767e8cf6562931f8312f4faa7ddea412cb783d8df49e62c44d00d89f41f9bbe8 scipy-1.15.0-cp313-cp313-macosx_12_0_arm64.whl
37ce9394cdcd7c5f437583fc6ef91bd290014993900643fdfc7af9b052d1613b scipy-1.15.0-cp313-cp313-macosx_14_0_arm64.whl
6d26f17c64abd6c6c2dfb39920f61518cc9e213d034b45b2380e32ba78fde4c0 scipy-1.15.0-cp313-cp313-macosx_14_0_x86_64.whl
1e2448acd79c6374583581a1ded32ac71a00c2b9c62dfa87a40e1dd2520be111 scipy-1.15.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
36be480e512d38db67f377add5b759fb117edd987f4791cdf58e59b26962bee4 scipy-1.15.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
ccb6248a9987193fe74363a2d73b93bc2c546e0728bd786050b7aef6e17db03c scipy-1.15.0-cp313-cp313-musllinux_1_2_x86_64.whl
952d2e9eaa787f0a9e95b6e85da3654791b57a156c3e6609e65cc5176ccfe6f2 scipy-1.15.0-cp313-cp313-win_amd64.whl
b1432102254b6dc7766d081fa92df87832ac25ff0b3d3a940f37276e63eb74ff scipy-1.15.0-cp313-cp313t-macosx_10_13_x86_64.whl
4e08c6a36f46abaedf765dd2dfcd3698fa4bd7e311a9abb2d80e33d9b2d72c34 scipy-1.15.0-cp313-cp313t-macosx_12_0_arm64.whl
ec915cd26d76f6fc7ae8522f74f5b2accf39546f341c771bb2297f3871934a52 scipy-1.15.0-cp313-cp313t-macosx_14_0_arm64.whl
351899dd2a801edd3691622172bc8ea01064b1cada794f8641b89a7dc5418db6 scipy-1.15.0-cp313-cp313t-macosx_14_0_x86_64.whl
e9baff912ea4f78a543d183ed6f5b3bea9784509b948227daaf6f10727a0e2e5 scipy-1.15.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
cd9d9198a7fd9a77f0eb5105ea9734df26f41faeb2a88a0e62e5245506f7b6df scipy-1.15.0-cp313-cp313t-musllinux_1_2_x86_64.whl
129f899ed275c0515d553b8d31696924e2ca87d1972421e46c376b9eb87de3d2 scipy-1.15.0-cp313-cp313t-win_amd64.whl